韧性电网下的时空多图卷积网络恐怖主义事件模型

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:恐怖主义;事件预测;知识图谱;时空多图卷积网络;韧性电网DOI:10.15938/j. jhust.2025.05.010中图分类号:TM73 文献标志码:A 文章编号:1007-2683(2025)05-0096-10

Abstract:Terrorsm isoneof themostimportantthreats totoday’scivilization.Terorsmnotonlydisturbsthesocialorderbut alsoaffctstequalityofifArtifialintellgencesowsgreatpotetialinprovdingsuportfodataanalysandpateentiatio incounter-terorismactivites.Onthisbasis,tispaperproposesanelectricpower terorismevent predictionmethodbasedonhe knowledgegraphndspatial-temporalulti-graphonvolutioalnetworkundertheresilientpowergid,whichcaefectivelymieth data nglobal terorismdatabase(GTD),andconstructaknowledge graph.Theknowledge graphcontainsnodesandrelationsipsthat describethecharacteristicsofachteroristattackThen,weobtainthetrendandperiodcityofterristeventsthroughtewavelet transform,andeploytespatiapoalultiapovolutioaletwrktodeltespa-poraldamicelatiosf timeseriesdataoftrroristevents.Finally,thebehaviorof teroristeventsispredictedthroughtherainedmodel.Theexperiental results show that the performance of the proposed method is more than 90% in terms of accuracy,precision,recall, and F1-score .Our method is significantly superior to the existing methods.

Keywords:terorism;eventprediction;knowledgegraph;spatial-temporal multi-graphconvolutionalnetworks;resilient power grid

0 引言

电力系统是国家关键基础设施,电力安全与政治安全、经济安全、网络安全、社会安全等总体国家安全体系中的诸多领域密切关联。(剩余14038字)

monitor
客服机器人