XL-MIMO 系统中基于稀疏度自适应匹配追踪算法的混合场信道估计

打开文本图片集
中图分类号:TN929.5;TN911.22 文献标志码:A 文章编号:1007-2683(2025)05-0106-08
Abstract:Compared to the massive multiple-input multiple-output (MassiveMIMO)of 5G,theExtra-Large Masive MultipleInput Multiple-Output(XL-MIMO)of6Gutilizesanultra-large-scaleantennaarray,resultingintheexistenceofhybrid-field chanels.Existingchannelestimationschemesforfar-fieldandnear-fieldchannelsareinacuratewhenappiedtotheestimationof hybrid-fieldchannelstateinformation.Aditionally,obtainingthesparsityofchannelsinpracticalcommunicationscenariosis challenging.Thispaperproposesahybrid-fieldchanelestimationschemebasedontheSparseAdaptive MatchingPursuit(SAMP) algorithm.Specifically,theSAMPalgorithmdoesnotrequirepriorknowledgeofthesparsityoffar-fieldandnear-fieldchannels.By exploitingthecharactersticsofresidualsthroughinnerproductoperations,itidentifiesthesupportsetofallnon-sparselements coresponding tothesensingmatrixMoreover,bystingathresholdandcomputingthediferencebetweethenewandoldresiduals, non-sparseelementscoespondingtothechannelareidentfied,enablingchaelstiationSimulationresultsdmonstrateatthe proposed hybrid-field SAMPschemecan efectively estimate hybrid-field channelseven in the absenceof prior knowledgeof F1-score (20 sparsity,and it outperforms existing channel estimation schemes in terms of performance.
Keywords:XL-MIMO;channel state information;sparse adaptive matching pursuit ;hybrid-field;channel estimatior
0 引言
超大规模海量多输入多输出(extra-largemas-sivemultiple-inputmultiple-output,XL-MIMO)是无线通信领域的一项重要技术,在6G中具有重要意义,为高速移动数据传输、物联网和智能城市等场景提供了强大的支持[1-2]。(剩余11145字)