数据驱动的光伏功率超短期自适应优化预测

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:光伏发电;时序预测;变分模态分解;门控循环单元;雾淞优化DOI:10.15938/j. jhust.2025.05.007中图分类号:TM615 文献标志码:A 文章编号:1007-2683(2025)05-0070-08

Abstract:The stochastic natureof solar power has been complicating maters forshort-termandultra-short-term forecasting.To tacklethischalenge,thispaperproposesan IVMD-RIME-GRUmodelwithadaptiveoptimization.Firstly,inthedataprocesing procedure,theoriginalsolarpowersignalissubjectedtoImprovedVariationalModeDecomposition(IVMD),andthedecomposed modalsignalsareforecastedseparatelyindiferentmodels,whichmitigatesthenon-stationarityimpactofsolarpower.TheIVMD methoddetermines theoptimal numberofVMDmodes bychecking whethertheresidueapproximateswhitenoise,whichhelpsto aleviateinformationlossinmodaldecomposition.Inthetrainingandforecastingstage,theGatedRecurentUnit(GRU)andthe RIMEoptimizerarebothemployedfortheirdistinguishedperformanceintheirrespectivefields.TheGRUacquirestheoptimal parametersfromtheRIMEoptimizerandshowsbeterpeformance.Inthelaststep,theindependentforecastingresultsofeachmode compoundthectualforecastingoutputSimulationresultsindicatethatheproposedalgorithmnotonlyimprovesthepeformanceofthe original GRU forecasting model by more than 70% ,but also achieves good tracking of rapid peak-valley transitions in solar power generation.

Keywords:solarpower;time series forecasting;variational mode decomposition;gated recurrent unit;RIMEoptimizer

0 引言

在全球绿色低碳转型、我国“双碳”目标确立的背景下,光伏发电因其绿色环保及低成本优势,迅速发展为可再生能源的支撑性力量。(剩余12707字)

monitor
客服机器人