结合图像编码器与2D-CNN的钢桁梁桥损伤识别

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:U446.2;TU317 文献标志码:A 文章编号:1007-2683(2025)05-0027-14

Combining Image Encoder and 2D-CNN for Steel Truss Bridge Damage Recognition

CHEN Mengyuan, RAN Zhihong, PAN Jie (College of Architecture and Planning,Yunnan University,Kunming 65O5OO,China)

Abstract:Aiming attheproblemthattraditionalmachinelearingisdificulttodeal withthecomplicateddataunderlong-term monitoring,acombinationofimageencoderand2D-C(two-dimensionalconvolutionalneuralnetwork)inteligntdamageition methodisproosdA2.5stltrusststbdgenditsoespodingfiteementoelareedfotesudyndiidsf imageencodersareusedtoconvertthtime-rangedisplacementdataintoequal-sizeimage matrices,andthematricesareusedasthe two-dimensional rainingsamplesofCNN(convoutionalneuralnetwork)tobtainthedplearning modelfordamagerecognition,so astovalidateteroustessoftediferentimageencodingmetodsindamageinformationextractioandpattenrecognitioResults show that the method improves the accuracy by 23.4% compared with the traditional machine learning algorithm and 1D-CNN(onedimensionalconvolutioalneuralnetwork),andafterfurtherexperimentalstudies,thestabilityandapplicabilityofGAF(gramian angular field)are found to be optimal,and its damage recognition accuracy reaches 100% :

Keywords:damage identification; image encoder; 2D-CNN;bridge health monitoring;machine learning

0 引言

短、节省材料、拓扑特征明显等优点,被广泛用于桥梁结构。(剩余17130字)

monitor
客服机器人