核电站冷却水泵的小样本迁移学习故障诊断模型

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:冷却水泵;小样本;注意力门控循环神经网络;迁移学习;故障诊断精度DOI:10. 15938/j. jhust. 2025.05.006中图分类号:TH212;TH213.3 文献标志码:A 文章编号:1007-2683(2025)05-0058-12

Abstract:Forthe smallsample imbalance problem inthediagnosis ofcoling water pumpfaults innuclearpower plants,asmall samplefault diagnosis modelforcoling waterpumpsinnuclear powerplants(GRU-AM-TL)thatintegrates transferlearningand attentiongatedrecuentneuralnetworksisproposedFirstly,anaentionlayerisitroducedintotheGatedRecurrntUnit(GRU) neuralnetworktoostuctanatentiongatedecuenteuralnetworktatadaptivelyssigsdirentweightstteextracedfeatures. Then,transferlearning(TL)isusedtolearnknowledgefromrelevantsourcedatasets.Intheexperiment,theGRU-AM-TLmodelwas compared with GRU-based methodsandotherclasicalmethodsusingbearing datasets,gearboxfaultdatasets,andnuclearpowerplant simulated fault datasets.The results showed that the diagnostic accuracy of this method was improved by 1.2% ,9.4%, 12.3% , 4.8% ,and 2.9% compared to other methods using 2% datasets A~E,reaching 83. 1% ,85.8%,82.8%, 86.4% ,and 83.3% , respectively,which can effectively improve the fault diagnosis accuracy in small sample scenarios.

Keywords:cooling waterpumps;smallsample;atention gatedrecurrent neural network;transferlearing;fault diagnosis accu racy

0 引言

反应堆冷却水泵等旋转机械是核电站的一种重要设备,具有流体输送、能量传递和转换等重要功能。(剩余16214字)

monitor
客服机器人