改进YOLOv5s算法的小目标输电导线缺陷检测方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:无人机巡检;输电导线;缺陷检测;卷积块注意力模块YOLOv5;交并比损失DOI:10.15938/j. jhust.2025.05.004中图分类号:TP751.1 文献标志码:A 文章编号:1007-2683(2025)05-0041-09

Abstract:Asthecarrierof transmision lines,power transmissionconductorsaresusceptible tothe influenceof theexternal environmentandtheoccurenceoflinedefectssuchasbrokenconductorstrandsorloseconductorstrands.Aimingattheissuesof poordetectionperformancecausedbytheinfluenceofcomplexbackgroundsduringunmanedaerialvehicle(UAV)cruising inspectionsofsisilies,swellassdandfleectiosuetcessielysallfoductordectets aerial images,a detection method named CBAM YOLOv5 based on the atention mechanism is proposed. Firstly,the original attntion mechanismCBAMfeatureextractionisoptiizedtoincreasetheextractionefectof transmissonconductorfeatureinformationAthe samtime,themulti-scaletrainingstrategyisusedtoimprovethemodel'sabilitytoperceivethefeatureinformation.Finally,ore superiorlossfunction WIULossisproposedtocopewiththeproblemofunbalanced positiveandnegativesamplesinthesmaltarget. Theexperimentalsimulationshowsthattheimprovedalgorithmappliedonthewiredefectdatasetimprovesthecomprehensive performance by O. O67 compared with YOLOv5s,and the accuracy reaches 87.9% ,which is 2% higher than YOLOv5s,verifying the effectiveness of the improved algorithm.

Keywords:unmannedaerialvehicle inspection;transmisionconductor;defectdetection;convolutional block atentionmodule YOLOv5 ;Wise-IoU Loss

0引言

截至2015年底,中国220千伏及以上输电线路总长60.9万公里。(剩余11735字)

monitor
客服机器人