基于GRNN的特高压直流输电线路故障识别方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:广义回归神经网络;特高压直流输电线路;继电保护;广义S变换;故障识别DOI:10.15938/j. jhust.2025.02.014中图分类号:TM723 文献标志码:A 文章编号:1007-2683(2025)02-0131-09

Abstract:Aprotection methodforultra-highvoltage directcurenttransmisson linesbasedongeneralizedregressonneural network(GRNN)isproposedtoaddresstheisuesofeasyrejectionandlongfault detectiontimeinultra-highvoltagedirectcurrent protection.FirstlyasedonthegneralizedStransfo,thefaultcharacterisiciformationintefrequencydomainistaindto constructhe input data for GRNN.Secondly,thechaosquantum particleswarm optimization(CQPSO)algorithm isused tooptimize theparametersofthegeneralizedregressonneuralnetwork,foranidealnetworkmodelbasedontheprincipleofthelowestfinss function,andbeterlathultcharacterissofthulra-hghvageDCtrasmssonlne.TeSofaxlasifierisuiledto clasifydep-levelfeatures,dentifingfaultsasexteal,us,orlinefults,andpolarizingtemintopositive,negative,orbipolar faults,thenoutpuigrecogitioesultsinally,heultra-higagediecturnt tasmissnodelbuiltineCA/C simulatioenvronmentisvalidated,andtevadationresultsshowedthattheproposedmethodhasgoodpeformanceinfaultetection andfaultpoleselectionofultra-highvoltagedirectcurenttransmissionlinerelaprotectionComparedtotradionalonolutional neuralnetwoks,generalizedregressionneuralnetworks,upportvectormacines,andotermethods,thefultrecognitionacyof the proposed method in this paper has been improved by 6.6% , 0.65% ,and 7.69% ,respectively,meeting the requirements of protection speed and reliability.

Keywords:generalizedregressonneuralnetwork;UHVDCtransmissionline;relayprotection;generalizedS-transform;faulti dentification

0 引言

随着新型电力系统建设的推进,特高压直流输电由于其传输容量大、传输距离远、线路损耗少等显著优势,可以很好地接入分布式电源和储能装置,进而推进我国“双碳”目标,故研究特高压直流输电技术已经成为热点。(剩余13451字)

monitor