基于融合采样和图网络的三维目标检测

打开文本图片集
中图分类号:TP391.41 文献标志码:A 文章编号:1007-2683(2025)02-0042-11
Abstract:Inthe3Dtargetdetection technologybasedonpointcloud,there areproblems likehighcostof pointcloudcalculation andlargegap betwee targetscales,whichleadtolowtargetdetectioneficiency.Inresponse,thispaperproposesa3Dbject detectionalgorithmbasedonfusionsamplingandgraphetworks.Firstly,thepointcloudfusionsamplingtechnologyisintroducedto sampletheoriginalpointcloudtoeducethecomputatioalcomplexitySecondlytheK-NNalgorithisusedtoconstructtheapof thesampledpointcloud,andsub-imagesamplingisintroducedtosolvetheproblemofover-smothgraphconvolution.Finally,the featuresofgraphnodesareupdatedthroughfeatureinteraction toimprovethefeatureextractionabilityofthenetwork,thereby improvingthetargetdetectionefect.ThisstudyconductedexperimentsontheKIT3Ddataset.Comparedwith thebenchmarkmodel Point-GNN,the detection accuracy of the car target was improved by 3.89 % . In the simple scene and the medium difficulty scene,the detection accuracy of the cyclist target is increased by 6,60% and 4.36% ,respectively.
Keywords:point cloud; 3D object detection;graph neural network;fusion sampling;feature fusion
0 引言
在自动驾驶系统中,激光雷达作为环境感知设备被广泛应用。(剩余17257字)