基于LSTM和误差修正的光伏发电短期功率预测

打开文本图片集
关键词:光伏发电;误差修正;优化算法;经验模态分解;功率预测
DOI:10.15938/j. jhust.2025.02.013
中图分类号:TM723 文献标志码:A 文章编号:1007-2683(2025)02-0122-09
Abstract:Inordertoimprovethestabilityof photovoltaicpowergridconnectionandmakefulluseoferorinformationtocorect themodelpredictionresults,thispaperproposesashort-temphotovoltaicpowerpredictionmodelbasedonlongshor-temmemory (LSTM)anderorcorrection.First,thedataispreliminarilypredictedbyLSTMtogenerateanerrorsequence,andthentheerror sequenceisdecomposedintosubmodelsofdiferentfrequenciesbyempiricalmodedecomposition(EMD).Similaritymeasureentis conductedaccording to Hausdorffdistance(HD),andeach modalcomponent isasigned weights,and thenLSTMoptimizedby SparowSearch Algorithm(SSA)isusedtopredicterormodalcomponents.The weighted predictionerror iscombinedwith the predictedvaluetoceverorcorrtionTouhexperiments,ithaseenproventatteodelproposdintisarticletpefos traditionalLSTMmodels,BP models,and SVMmodels inevaluation indicatorssuch asrotmeansquareerror(RMSE)and mean absolute percentage error (MAPE),verifying the effectiveness of the combined model.
Keywords:photovoltaicpower generation;errorcorrection;optimization algorithm;empirical modedecomposition;powerpredic tion
0 引言
在化石燃料短缺和气候急剧变化的背景下,世界各地正在逐步推进新能源的开发和利用[1-2]。(剩余13092字)