前景与背景交互融合网络用于伪装目标检测

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:伪装目标检测;前景与背景信息;非局部注意力;特征交互;特征融合DOI:10.15938/j. jhust.2025.02.006中图分类号:TP391.4 文献标志码:A 文章编号:1007-2683(2025)02-0053-11

Abstract:Aiming atthe problem of incompletedetectionresultsand blurrededgedetailsincurrentcamouflagedobjectdetection (COD)methods,anovelForegroundand BackgroundInteractiveFusionNetwork(FBIFNet)wasproposed tofurtherimprovethe performanceofCODthroughjointexplorationofforegroundandbackgroundregions.FBFNetcontainsakeyBilateralInteractiveusion module(BIF),whichusesapairofcomplementaryatentionstoguidethenetwork tojointlyreasonaboutcamouflagedobjectsfrom bothforegroudandbackgrounddirectionsndalsoutilizesaninteractionstrategybasedonthebidirectionalatentionmechanismanda weighted fusionstrategytoleancomplementaryiformationbetweenforegroudandbackgroundIndition,anAtentionalCascaded Positioning module(ACP)isincluded,whichcanlocalizecamouflagedbjectsfromaglobalperspectiveandprovidemoreacurate foregroundandbackgroundguidanceforBIF.Withthetwoproposedmodules,FBIFNetcanmoreaccuratelydetectcamouflaged objects.Extensive experimentsonthree publicdatasets(CAMO,CODlOK,and NC4K)demonstrate thatthe proposednetwork outperforms state-of-the-art methods in related fields on four evaluation metrics.

Keywords:camouflagedbjectdetection;foregroundandbackgroundinformation;non-localatention;feature interaction;featur fusion

0 引言

伪装是大自然中猎物为了躲避捕食者所进化出的独特能力。(剩余16994字)

monitor