基于对比学习的三维模型分类

打开文本图片集
关键词:三维模型分类;对比学习;卷积神经网络;注意力机制;迁移学习DOI:10.15938/j. jhust.2025.02.004中图分类号:TP391 文献标志码:A 文章编号:1007-2683(2025)02-0032-10
Abstract:At present,3Dmodelclasification hasbeenaresearch hotspot.Masive3Dmodels notonlyhavediversityineach class,butalsoavesimilaritisbetweenclases,whichseriouslyafect theclasificationaccuracyof3Dmodels.Weproposea3D modelclassficatiomethodbasedootrastielaingIntstod,thengisdidedintompledisiatioagead aclassifictionstage.Inthestageofsamplediscrimination,3Dmodelsofthesamecategoryaremutuallpositivesamples,and3D modelsofothercategoriesaremutuallyegativesampls.Thecontrastivelossisusedtoconstraintesamplefatures,ndtepositive andnegativesamplesareappedtothesingle-centerunithypersphereinthesamespace toobtainagoodsemanticrepresentationspace of3Dmodellasification.Inaditon,inodertocapturethecorelatinbetweentheviewsandthekeyareasintheviews,amultiheadslf-attentionmoduleandspatialatentionmoduleareintroducedinteaper.Moreover,thechaelatentionisddednthe multi-headself-atentionmoduletoobtainthechanneldimensioninformation.Intheclasificationstage,thenetworkmodelis trasferredtotheclassficationtaskbyfine-uningtenetworkparametrstocompletethe3Dmodelclasification.Theexperiental results show that the classification accuracy of the 3D model respectively reaches 99.4% and 97.5% on the ModelNet1O and ModelNet40 datasets.
Keywords:3Dmodel classification;contrastive learning;convolutionneural network;atention mechanism;transferleaing
0 引言
人类的视觉感知具有三维立体性,并且三维模型相较于文本、图像等拥有更加丰富的信息,因而三维模型在机器人、工业设计、无人驾驶等新兴领域有着举足轻重的作用。(剩余16242字)