基于ISMA-ELM混合模型的选择性激光烧结工艺参数优化

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:选择性激光烧结;黏菌算法;极限学习机;Levy飞行;随机反向学习;高度破坏性多项式变异DOI:10.15938/j. jhust.2025.02.002中图分类号:TP18 文献标志码:A 文章编号:1007-2683(2025)02-0011-11

Abstract:Anew hybrid model is proposed toaddesstheisueofsrinkage inselectivelasersinteringparts,whichcombines the Improved Slime mould Algorithm(ISMA)andExtreme Learning Machine(ELM)to predictthe shrinkagerateofthe partsusing limitedinputdata.Fistly,threeimprovementstrategiessuchasLevyflight,andomopposition-basedleaingandhiglydisuptive polynomialmutationareusedtoimproveteperformanceoftheviscousbacteriaoptimizationalgorithminallaspects.Subsequently, ISMAisusedtooptimizethekeyparametersofELM,andanSMA-ELMmodelisproposedtopredicttheshrinkagerateofSSparts. SimulationresultsdemonstratethattheproposedISMA-ELMobtainsoptimalpredictionresultscompared tothestandardandother algorithm-optiizedELmodels.Finall,theoptimalprocsingparameterspredictedbyteISMA-ELMmodelareusedtoguidethe machining,and the dimensional accuracy of the obtained molded parts is improved by 29.62% compared to the ELM model and 18.02% comparedto the SMA-ELM,which shows thatthe modelcan provideoptimalproess parameters for SLSmolding processing and guide the machining effectively.

Keywords:selective laser sintering;slimemouldalgorithm;extreme learning machine;levy flight;randomopposition-basec learning;highly disruptive polynomial mutation

0 引言

选择性激光烧结(selectivelasersintering,SLS)是一种利用高能量激光束逐层烧结堆积成型的快速成型技术,近些年得到了广泛的关注[1-2]。(剩余12378字)

monitor