结合特征降维和NGO-CNN-BiLSTM的招考智慧平台网络异常流量检测方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:招考智慧平台;特征降维;卷积神经网络;双向长短期记忆网络;北方苍鹰优化算法DOI:10.15938/j. jhust. 2025.02.007中图分类号:TP391 文献标志码:A 文章编号:1007-2683(2025)02-0064-09

Abstract:Inviewofthechalengesbroughtbycomputervirusesandnetwork maliciousattckstotheoperationandmaintenanceof therecruitmentintelligentplatfomsystem,thispaperproposesamethodtodetectabnoaltraffcofthercruitmentsmartplatfor basednfeaturedimensionalityreductioncombinedwithNorthernGoshawkOptimization(NGO)tooptimizeconvolutional neural network(CNN)andBi-directionalLong Short-Trm Memory(BiLSTM).Byusing theKernelPrincipal ComponentAnalysis(KPCA) methodtoreducethedimensionalityofthenonlinearinformationcontaindinthedataset,therduceddataisusedasinputforthdep learningnetworkmodel.Then,theconvolutionkernelofCNNisoptimizedbyNGOtoobtaintheoptimalconvolutionkerel,andthe abnormatraffcwasdetectedbyBiLSTM.TheCIC-IDS-2017datasetisusedtoanalyzethetrainingandtestsamplesoftheitrusion detectionnetworkmodel,andtheacuracyandrainingtimeareimprovedcomparedwithother methods,whichconfirmsthefeasibility and effectiveness of this method.

Keywords:recruitmentintellgence platfom;featuredimensionalityeduction;ConvlutionalNeuralNetwork;Bi-directioalLong Short-Term Memory; Northern Goshawk Optimization

0 引言

招考智慧平台具有更高的开放性,而开放性必然导致潜在的安全威胁,如何提升招考智慧平台的入侵检测系统的流量数据分析处理能力,并提高网络攻击检测效率、异常数据分类精度和入侵检测的自动化水平,是招考智慧平台网络安全面临的核心和关键问题。(剩余13349字)

monitor