基于CNN和Bi-LSTM模型的蛋白质甲基化位点识别

打开文本图片集
关键词:甲基化;卷积神经网络;双向长短时记忆网络;特征融合;位点识别DOI:10.15938/j. jhust.2025.02.009中图分类号:TP391.4 文献标志码:A 文章编号:1007-2683(2025)02-0082-09
Abstract:MethylationisaproteinPost-Translational Modification(PTM)thatregulatescellfunction,whichcanprovideguidance andhelpforresearchinthefieldsofgeneregulationanddiseaseprediction.Atpresent,therearesomeproblemsintheresearchof methylationsiterecogitin,suchasfewlabeleddtasets,nsuffcentpositivesmpledataandlowrecogitionaccracyofhylation research.Inordertosolvetheseproblems,thispaperproposesaproteinmethylationsiterecognitionmethodbasedonConvolutional NeuralNetwork(CNN)andBi-directionalLongShor-TermMemory(Bi-LSTM)model.Ourmodelisdividedintotwobranches.The CNNbranchusesadenseconnectionmethodtomakethefeatureinformationofachlayerfull transmitedandshared.ThestackedBiLSTMbranchesobtainbidirectionallong-termdependenciesinthesequence,andthenthetwobranchesperform featurefusionfor methylationrecognition.ExperimentsshowthattheAccuracy(ACC),F1Score(F1score)andMatthewsCorrelationCoficient (MCC)obtainedbyusingourmodeltoidentifymethylationsitesareO.8519,0.8494andO.7284,respectively.Compared with other methods,the model has better performance.
Keywords;methylation;convolutionalneuralnetwork;bi-directionallongshrt-termmemory;featurefusion;siterecogition
0 引言
甲基化是一种翻译后修饰(post-translationalmodification,PTM),通过向蛋白质结构中添加甲基来修饰蛋白质的功能和构象,在表观遗传过程中发挥着重要的作用[]。(剩余15029字)