乳腺癌术后化疗病人感染风险预测模型的 构建

  • 打印
  • 收藏
收藏成功


打开文本图片集

Construction of an infection risk prediction model for breast cancer patients undergoing postoperative chemotherapy

ZHONG Yanlan,ZHANG Qing,PENG Yun

GanzhouPeople'sHospital,Jiangxi341oo0China

CorrespondingAuthor ZHONGYanlan,E-mail: zhongyanlanl@163.com

AbstractObjective:Toconstructaninfectionriskprediction model forbreastcancerpatientsundergoingpostoperativechemotherapy. Methods:Atotalof368patientswhounderwentpostoperativechemotherapyforbreastcancerandadmitedtothethyroidandbreast surgerydepartmentofGanzhouPeople'sHospitalfromOctober2O2OtoJune2023 wereselectedas thestudysubjects.BasedonLogistic regreionnalss,aifcatiogreiontreendackpropagaralrkagiskpdictioodelsfectioi breastcancerpatientsundergoingpostoperativechemotherapywereconstructed.The predictivevaluewas analyzed bycomparingthe receiveroperatingcharacteristccurvesof theprediction models.Results:Infectionsocured i62breastcancerpatientsundergoing postoperativechemotherapy,primarilyafectingtherespiratorytract.MultivariateLogistcregressionanalysissultsshowedatbone marowsuppressonCeactiprotedprocalioereepdentiuecingfactosforfetisieascit undergoing postoperative chemotherapy (P<0.05) .The classification regression tree model showed that C-reactive protein,procalcitonin, drainagedurationanddiabeteswereinfluencingfactorsforinfections.Thebackpropagationneuralnetwork modelshowedthatthe importanceoffactorsafectinginfectionsinbreastcancerpatientsundergoingpostoperativechemotherapywasrankedasfollows: C-reactive protein>procalcitonin>combined diabetes>length of hospital stay > bone marrow suppression>drainage duration>serum albumin>chemotherapycycles.Among thethreemodels,thebackpropagationeuralnetworkmodeldemonstratedthebestpredictive performance.TheareaunderthereceiveroperatingcharacteristiccurvewasO96.Thesensitivitywas1.Oo.ThespeificitywasO.931.

Conclusions:TeinfluencingfactorsofinfectionriskinbreastcancerpatientsundergoingpostoperativechemotherapyincludeCreactie protein,proalionbtes,gthfsitalaydoapiotcoiskictoodet cancerpatientsundergoingpostoperativechemotherapyconstructedbasedonmachinelearmingalgorithmsallexhibitedgood performance,with the back propagation neural network model demonstrating the best predictive performance.

Keywordsc;soatieaditidel;gistalis regression tree; back propagation neural network; influencing factor

摘要目的:构建乳腺癌术后化疗病人感染风险预测模型。(剩余10765字)

monitor
客服机器人