一种风矢量分解和RobustSTL-TimesNet-BiGRU的复杂地形风向预测

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:针对复杂地形下的风向预测场景,提出一种风矢量正交分解、鲁棒性局部加权回归下的周期趋势分解(RobustSTL)方法、TimesNet模型和融合双向门控循环单元网络(BiGRU)误差补偿的多步风向预测方法。首先,为了减少原始风向循环圆周特性带来的大幅度波动性,将风向与相关性强的风速利用风矢量正交分解方法转化为波动性较小的矢量风速,并利用RobustSTL将矢量风速分解为趋势项、季节项和剩余波动项。(剩余20992字)

目录
monitor