基于迁移学习的室内波束选择优化方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要: 使用基于深度学习的室内波束选择方法可以显著提高波束匹配概率和搜索效率,但该方法需要大型数据集来调整其大量可训练参数,导致了额外的系统开销。针对这一不足,结合一种迁移学习技术,使得目标场景神经网络以小数据集方式获得与大数据集相近的匹配精度,从而减小基于深度学习的波束选择方法中数据集大小对匹配结果产生的影响。(剩余13403字)

目录
monitor