基于特征图的路面冻融裂缝红外检测算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:U416.2 文献标志码:A 文章编号:1005-8249(2025)02-0164-05

DOI:10.19860/j.cnki.issn1005-8249.2025.02.028

Abstract:Aimingatthe problem of porconvergenceeffectoffreeze-thaw crack characteristicsandlowaccuracyof pavement freeze-thaw crack detection,an infrared detection algorithm for pavement freeze-thaw cracks basedon feature maps was designed.Basedontheprincipleofinfraredthermal imaging,anewmethodforreconstructing thetemperaturefieldofpavement freze-thawcrack infrared thermal imagesisformedbycombininganisotropictemperaturefieldreconstructionandbilateral flteringteory.Afreze-thawcrackfeature matrix isconstructed,andthepavementfreze-thawcrack infrared iage isused asinputtooptimizetheconvolutionkernelweightsoftheconvolutionalneuralnetwork.Afeaturemapbaseddetectionmethodis constructedtoobtainthebestpavementfreze-thawcrackinfraredimagingdetectionresults.Theresultsshowthatthealgorithm can maketheinfrared images ofroad freeze-thaw cracksclearerafter temperaturefieldreconstruction,and preservetheedge informationandcontouroftheimage.Moreover,underdiferenttypesof noise interference,thereconstructed temperature field imagealwayshasahighpeaksignal-to-noiseratio.This methodhasdetecteddiferent typesof pavementfreeze-thawcracks, which can improve the effectiveness of road safety operation and maintenance

Key words:road freeze-thawcracks;convolutionalneural network;infraredimaging;thermalimage denoising;crack detection; machine learning

0 引言

随着我国基础设施建设的快速推进,对路面结构耐久性提出了更高要求。(剩余4893字)

试读结束

monitor