基于坐标注意力的多尺度轻量级苹果叶片病害识别模型

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:为解决传统神经网络参数量大、无法满足资源有限的移动设备对苹果叶片病害的识别需求,提出一种基于坐标注意力的多尺度轻量级模型CA—MobileNetV2。首先,将MobileNetV2倒残差中3×3的卷积替换成多尺度特征融合模块(MMF—module),在不增加参数量的前提下,引入空洞卷积增大感受野,以捕捉丰富的多尺度细节信息,增强网络对细节信息和语义信息提取能力;其次,引入坐标注意力机制自适应地学习不同位置的特征权重,增强对苹果叶片病害区域的感知能力;最后,针对模型训练中的梯度消失问题,改进MobileNetV2的分类器,并引入Leaky ReLU激活函数。(剩余17288字)

目录
monitor