基于边界样本分位数的葡萄霜霉病自适应识别方法

打开文本图片集
摘要:针对葡萄霜霉病病斑组织图像阈值难以确定的问题,提出一种基于边界样本分位数的自适应阈值确定方法,通过高斯滤波识别病斑边界,并采用边界样本的50%分位数确定为病斑阈值。之后采用蒙特卡洛方法,通过随机采样方法估算病斑比例。结果表明,与其他阈值确定方法对比,所提方法能够自适应获取病斑灰度阈值,识别精度达到92.2%,明显高于其他阈值确定方法;与传统的机器学习方法对比,在识别精度上高于BP神经网络、卷积神经网络、支持向量机,略低于VGG16模型的94.3%与ResNet50模型的96.26%,但计算时间为1.410 s,远快于VGG16模型与ResNet50模型的5.588 s与20.317 s,说明方法能够在较短的运行时间内实现较高的精度。(剩余13636字)