基于深度对比迁移学习的变工况下机械故障诊断

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要: 机械设备实际运行中的工况具有时变性,这加剧了源域(训练集)和目标域(测试集)数据之间的分布差异,因而导致智能故障诊断模型的性能下降。提出了一种基于深度对比迁移学习的方法,可用于机械设备变工况下的故障智能诊断。利用多层卷积块作为模型前置特征提取器,能够有效提取原始振动数据的代表性特征,提升故障分类器和域判别器的诊断性能。(剩余12005字)

monitor