基于深度学习的到课率统计系统设计与实现

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:到课率作为宏观教学管理数据,对高校教学管理具有重要作用。虽然近年来出现了一些课率统计的数字化方法,解决了传统到课率统计费时、费力、滞后等问题,但由于成本高、使用不方便、准确率不高等原因,导致其无法推广。随着技术的发展,深度学习在多目标检测中的准确率越来越高,有助于解决此类问题。为此,文章利用深度学习技术,设计了一种基于教室摄像头RTSP视频流的到课学生头部识别的模型1MB-Plus,并将其应用于某高校的一百余间教室的到课率统计中,取得了97.3%的准确率。(剩余12293字)

monitor