基于注意力机制的递进式特征提取去雾网络

打开文本图片集
中图分类号:TP391 文献标识码:A 文章编号:2096-4706(2025)22-0030-06
Progressive Feature Extraction Dehazing Network Based on Attention Mechanism
CHENG Xiaoyuan WANG Bingwen, LI Baoguang,FENG Lei, JIN Nengzhi (1.Gansu Computing Center,Lanzhou,China;2.KeyLaboratoryofAdvanced Computing,Lanzhou ,China)
Abstract:Aiming atthe limitations of existing single image dehazing algorithms in terms ofaccuracyand detail retention, a progressive feature extraction dehazing network based on atention is constructed.Taking AOD-Net as the benchmark framework,thefeatureinteractionpath isreconstructedbypointwiseconvolutionandmulti-dimensionalcollborativeAetion Mechanism,whicheduces thescaleofmodelparametersandimproves thecomputational effciencyThe progresive feature extractionnetworkstructureisdsignedndthemulti-scalefeaturefusionstrategyisusedtoeancetesepaationabilityofthe network tothelong-rangefogconcentrationgradientandhigh-frequencydetails.Themult-scalestructuralsimilarityconstraint andtheadaptiveloss optimization mechanismarefurther integrated tosignificantlyimprove theconsistencyof texture structure andthe balanceofcolordistribution intherestored image.Theexperimentalresultsshowthattheproposednetwork exhibits excellent detail retention ability and visual naturalnessin both synthetic and real fog image scenes.
Keywords: image dehazing; Convolutional Neural Network; Atention Mechanism; multi-scale network
0 引言
恶劣天气下采集到的图像往往受雾霾等的影响,这将降低图像的对比度和细节的可见度,降低图像的质量,从而影响后续的计算机视觉任务[1]。(剩余12013字)