基于BERT-BiGRU-CRF的农业病虫害命名实体识别模型研究

打开文本图片集
中图分类号:TP391.1 文献标识码:A文章编号:2096-4706(2025)22-0007-05
Research on Named Entity Recognition Model of Agricultural Pests and Diseases Based onBERT-BiGRU-CRF
YANGNing,PANJiao,LIANGJiao,RANTao,LENGZhenbei (Chongqing College of International Business and Economics,Chongqing 401520,China)
Abstract:Theaccurate extractionofagricultural pest and disease information holds significant importance foragricultural production.Namedentityrecognition,asakeytechnology,facilitatesthepreciseretrievalofrelevant informationfromvast volumes ofagricultural texts.Addresing limitationsofconventional methods—suchasrelianceonmanual dictionariesand inadequate feature extraction capabilities—this paper proposes a BERT-BiGRU-CRF-based model for agricultural pest and disease namedentityrecognition.ThemodelfirstemploystheBERTpre-trainedmodeltogenerate high-qualitycontextual semantic vectorrepresentations.Subsequently,BiGRU captures long-range contextual dependencies tocomprehensively extract sequence features.Finally,CRFselects theoptimal annotationsequence to produce accurate entityrecognition results.Experimentalesultsdmostratetatteproposedmodelaievessuperiorprecision,ecallandF1soresoaselfconstructed agriculturalpestand disease named entityrecognitiondataset.Optimal anotation sequences toproduceacurate entityrecognitionresults.Experimentalresultsdemonstratethatonaself-constructedagriculturalpestanddisease namedentity recognition dataset, the proposed model achieves precision,recall,and F1 scores of 76.46% 79.65% ,and 77.92% respectively.
Keywords: agricultural pests and diseases; named entity recognition; BERT; BiGRU; CRF
0 引言
农业作为国民经济的基础产业,病虫害的有效防控直接关系到粮食安全与农民增收。(剩余6698字)