基于LSTM时间序列模型的医疗资源配给预测方案

打开文本图片集
中图分类号:TP183 文献标识码:A 文章编号:2096-4706(2025)22-0017-07
Medical Resource Allocation Prediction Scheme Based on LSTM Time Series Model
GUOYing',ZHANGLili',LI Yuemei¹,YULiangchao² (1.The First Afliated Hospital ofGuilin Medical University, Guilin 541oo1, China; 2.Guilin University ofElectronic Technology, Guilin 5410o4, China)
Abstract: Accurate prediction and efficient deployment of medical supplies are the core to improve the effectiveness ofepidemicpreventionandcontrol.Thetraditionalmodelisdifculttoefectivelydealwiththenonliearcharacteristicsand dynamic nterferenceof time series data,anditiseasyto introduce prediction bias.BasedontheLong Short-TermMemory (LSTM)network,this studyuses its gating mechanismandlong-term dependence modelingability tooptimizethecomplex temporalcorrelationinepidemicdata.CombinedwithAdamoptimizer,aneffcientmedicalsupplydemandforcastingmodelis constructed.Experimentsbasedontherealdataof thenewcoronavirus epidemicinmultiplecitiesshow thattheLSTMmodel inthis paper has advantages in predictionperformance and eficiencycompared with benchmarks such asregressonmodel, recurentneuralnetworkandTransformer.Theablationexperimentfurthershowsthatwhenthelengthofthehistoricalwindow is setto4,the modelcanbestbalance thelong-termrulecaptureandnoisesuppression,therebyachieving optimalperformance.
Keywords: medical supply demand forecasting; LSTM; time series prediction; gating mechanism
0 引言
近年来,全球范围内公共卫生突发事件 (流感、新冠等)频发,严重威胁人类生命健康[。(剩余10584字)