基于改进CBR算法特征权重分配的震后应急物资需求预测方法

打开文本图片集
中图分类号:TP391 文献标识码:A 文章编号:2096-4706(2025)07-0133-06
Abstract:Inorder toimprove theaccuracyofpost-earthquake emergencymaterial demandforecasting,this paper proposes afeatureweightllocationmethodbasedonimprovedCase-BasedReasoning(CBR)algorithm,andconstructsapost-earthquake emergencymaterial demand forecasting modelbasedonsafetystock theory.The model isbasedonseven earthquakedisaster indicatorssuchasagntude,focaldepth,artquakeocrecetime,populationdensityumberofousecollaps,eisic fortificationintensityandseismicintensity.Itcanacuratelyforecastthedemandforvarioustypesofemergencymaterialsafter theearthquake.The experimentalresults show thatthe MeanRelative Errorof the forcast valueobtained bythe forecasting model optimized bygame theory-improved geneticalgorithm(SAGA)and Analytic Hierarchy Process (AHP)algorithmare 89 . 5 7 % and 8 7 . 5 1 % lower than that obtained by GA algorithm optimization and SAGA algorithm optimization,respectively. This showsthat the modelcan providestrong technicalsupport for theeffcientallocationofpost-earthquake emergency materials.
Keywords: post-earthquake emergency material; demand forecasting; game theory; SAGA algorithm; Case-Based Reasoning algorithm
0 引言
中国位于欧亚地震带和环太平洋地震带之间,地震灾害的频繁发生严重威胁着国家的社会建设、经济发展和人民生命安全[。(剩余7281字)