基于K-means的动态聚类垃圾回收算法研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP333;TP301.6 文献标识码:A 文章编号:2096-4706(2025)07-0093-05

Abstract: Inconsumer electronics products based onNAND flash memory,garbage colection significantlyafects device performance,andcold-hot data separation is the keytooptimizing the garbage colection algorithm.This paper proposes an inovative method that uses the K-means clustering algorithm to automaticall determinethedata heat intervals and achieve eficientcold-hotdataseparation.Additionally,anadaptiveifluence factoradjustmentstrategyisdesignedtodyamically balancetheinfuenceofhistoricaldataheatandrecentdataheatOnthisbasis,thegarbagecolectionstrategyisoptimized.The simulationresults showthatcompared withtheexistingalgorithms,this methodhasasignifcant efectonimproving thereadwriteperformanceand achieving wear leveling,which is helpful in prolonging the service lifeoftheequipment and improving the overall performance.

Keywords: flash memory; garbage collection; cold-hot separation; K-means; clustering

0 引言

随着移动设备、嵌入式系统和数据中心的普及,NANDFlash闪存在存储领域的重要性日益凸显。(剩余7766字)

monitor