基于SwinTransformer的联合信源信道编码算法

打开文本图片集
中图分类号:TN911.22;TP391.4 文献标识码:A 文章编号:2096-4706(2025)07-0001-04
Abstract: JointSource-Channel Coding (JSCC),asa keyresearch direction in semantic communication,has achieved preliminary research results. However, with the increasing resolution of images,traditional JSCC algorithms based on Convolutional Neural Network(CNN)exhibitlimitations inextractingimagesemanticfeatures.Toadressthisissue,this paper proposes a JSCCalgorithm based on Swin Transformer.The algorithm firstlyutilizesa Multi-Scale Large Kemel Attention(MLKA)mechanismtoinitiallcapture thelocal informationand long-rangedependenciesofimages.Subsequently SwinTransformer is employed to further hierarchically extract image semantic features and perform adaptiverate coding. Experimentalresultsdemonstrate that,underthechannelmodelsofAditiveWhite GausianNoise (AWGN)andRayleighthe proposedalgorithmoutperformstraditionalalgorithmsin termsofPeak Signal-to-NoiseRatio (PSNR)andMulti-Scale Structural Similarity Index Measure (MS-SSIM).
Keywords: Joint Source-Channel Coding; Swin Transformer; Multi-Scale Large-Kernel Attention
0 引言
随着信息技术的飞速发展,通信系统的性能要求日益提高。(剩余6464字)