基于PSO算法优化BP神经网的PM2.5浓度预测模型

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词: 浓度;预测模型;PSO算法;BP神经网络

中图分类号:TP391.4;TP183 文献标识码:A 文章编号:2096-4706(2025)07-0047-06

Abstract:Aimingat the problem thatthe traditional BPNeural Network has slowconvergence speedand iseasyto fall into local optimal solution, this paper proposes a concentration prediction model based on Particle Swarm Optimization (PSO)algorithmoptimizedBPNeuralNetwork,whichcanquicklyconvergeandgettheglobal optimalsolution.Firstly,the pollutant indexes with high correlation with concentration are selected as input variables by Pearson correlation analysis. Secondly,thePSOalgorithmisusedtooptimizetheinitialweightsandthresholdsofBPNeuralNetwork,whichovercomesthe shortcomingsofBPNeuralNetwork,suchaseasytofallintolocaloptimumandslowconvergencespeed.Finally,themodel is trained and tested using air pollutant data from July 2O21 to June 2024 in Chengdu.Theresults show that the of the test setis 0.944,theMAEofthetestsetis4.231,andtheRMSEofthetestsetis6.364.ComparedwiththeunoptimizedBPNeural Network model,thePO-BPmodelhashgherpredictionaccuracyandfasterconvergencespeed,andcaneffctivelyprdictthe concentration of the next day in Chengdu.

Keywords: concentration,prediction model,PsO algorithm,BPNeural Network

0 引言

,即细颗粒物,其尺寸微小且具有强烈的吸附能力,它们在大气中停留时间长,能远距离传输,并可通过呼吸深入人体肺部和血液[1]。(剩余6936字)

monitor