基于集成学习的二次协同数据预测及优化方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:Fancyimpute库;数据插补;集成学习;BaggingRegressor模型;二次模型;协同预测模型中图分类号:TP391.4 文献标识码:A 文章编号:2096-4706(2025)07-0029-12

Abstract:The commonly used air quality prediction model has poor prediction efect on unknown conditions,and theactualmeteorologicalconditions haveasignificant impactontheconcentrationofairpollutants.Inorder toreduce the errorcausedbymeteorologicalconditionstothe model predictionof polutionconcentration,itisofgreat significance to obtain amodel with good prediction acuracy.Therefore,this paper proposes aquadraticcollaborative data prediction and optimization method basedon Ensemble Learning.Firstly,it combines the measured data with primary predicted data,and usestheFancyimpute libraryfordata interpolation for misingand deviating from the normal distribution data.Secondly,the BaggingRegressr model inEnsemble Learning is used toconstruct aquadratic model,adtheinfluence of meteorological conditions onpollutantconcentration isanalyzed fromthewhole tothe individual.Thevoting mechanism is usedtosynthesize allthe pedictionresults,andtheensemblepredictionresultsareobtained.Finally,acollborativedatapredictionmodelis constructed,andtelocationrelationshipndinddirectionfactorsareicludedforomprehensiveprediction.Theexprimetal results showthat themethodcanefectivelyimprovethepredictionaccuracyofthedataandthecolaborativepredictionmodel improves the prediction accuracy of the monitoring points.

Keywords:Fancyimpute library;data interpolation;Ensemble Learning; BaggingRegresor model;quadratic model; collaborative prediction model

0 引言

绿色环保理念日益深入人心,人类社会建设始终秉持可持续发展观念。(剩余12526字)

monitor