基于XGBoost的肥胖水平综合预测与SHAP模型解释分析

打开文本图片集
中图分类号:TP399 文献标识码:A文章编号:2096-4706(2025)07-0040-07
Abstract: This paper aims to use the XGBoost model to predict obesity levels and explain the contribution of various featurestoobesityriskthroughtheSHAPmethd,soastoidentifykeyifuencingfactorsandprovideascientificbasisfor obesity prevention.Modeling isconductedbasedonmultiple featuressuchas familyhistoryofobesity,dietaryhabits,and frequencyofphysicalactivityXGBoostisused topredictobesitylevels,andSHAPvaluesareappliedtoanalyzethempactof eachfeatureonthe modeloutput,toexplainthecontributionofeach feature toobesityclasifcation.Family historyofobesity age,and dietary habitsare keyfactors afectingobesity.SHAPanalysis furtherreveals the specificcontributionsandimpactof thesefactorsonobesityclassification.BycombiningtheeffcientpredictiveabilityofXGBoostandtheexplanatoryanalysisof SHAP,thisresearchnotonlyidentifiesthekeyfeaturesthataffctobesitybutalsoprovidesascientificbasisforpersoalized health management and obesity prevention,demonstrating theapplication potential ofMachine Learming inthe fieldof public health.
Keywords: SHAP; XGBoost; Big Data; obesity level; health management
0 引言
对肥胖水平进行数据挖掘,是指通过分析与肥胖相关的各类数据,揭示肥胖的成因、发展趋势以及与健康风险之间的关系,从而为肥胖的预防、管理和治疗提供数据支持。(剩余8043字)