基于改进YOL0v8n的轻量化工地堆放木材异常检测算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP183:TP391 文献标识码:A 文章编号:2096-4706(2025)07-0058-07

Abstract:When the timber materialsare stackedontheconstruction site,theoutdoorenvironment is prone to abnormal problemssuchas moisture deformationand drycrackingonthe surfaceofthe timber.Aimingatthe problems ofpooraccuracy andhighcomputationalcomplexityoftheexisting detectionalgorithmsonthesurfaceof timber materials,alightweightsmall target detection algorithm(YOLO-ESN)basedonYOLOv8nis proposed.Thealgorithm introduces the SpatialandChannel ReconstructionConvolution (SCConv) module and the Normalized WassrsteinDistance (NWD)lossfunction forsmal target detection.Atthesametime,itembeds theEffcientMulti-ScaleAtention(EMA)modulebasedonCross-SpatialLeaminginto thebackbone network toreduce the impact ofoccusionandbackgroundinterference.Theimprovedalgorithmis experimentally verified on the timber defect dataset. Compared with the original algorithm,its is increased by 3 . 6 % ,and the parameter quantity is reduced by 23 . 3 % ,which realizes the real-time and accurate detection of the abnormal situation of stacked timbermaterials.

Keywords: improvedYOLOv8nalgorithm; constructionsite timber anomalydetection; lightweight; smalltargetdetection

0 引言

木材作为生物材料常年暴露在室外,易受人为操作不当、虫蛀等因素影响而受损。(剩余8317字)

monitor