复杂场景下基于改进的Y0L0v5-pose的异常行为检测研究

打开文本图片集
中图分类号:TP391.4 文献标识码:A 文章编号:2096-4706(2025)07-0071-06
Abstract: This paper proposes an abnormal behavior detection algorithm based on the improved YOLOv5-pose in complexscenes.ItusesFPTtoreplacetheFPN+PANmodule,enablingthefeaturemapstoachieve globalandlocalinteraction acrossscales and spaces,and improving the accuracyofjoint point detection.Inthe Neck module,askipconnection structure is employedto efectively fusethe information ofthe input featuresand the multi-scale features output through the network, improvingtheabilitytocapturedetailed informationandenancing theauracyofdetectingoluded jointpoints.Experimental results show that the improved algorithm achieves an average accuracy of 9 9 . 5 % on the CrowdPose dataset,which is 2 . 4 % higher thanthatoftheoriginalmodel.Theimprovedmodelnotonlyhashigherdetectionaccuracybutalsosignificantlyimprovesthe recognition performance of small targets.
Keywords: YOLOv5-pose; behavior recognition; joint point detection; FPT; skip connection
0 引言
在城市人员复杂、社会安全风险高的重点场所,极易发生群体冲突、极端暴力等社会安全突发事件,加剧民众的心理恐慌,严重影响到社会稳定。(剩余8613字)