基于深度学习的声带疾病诊断识别方法比较研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:在医学图像诊断领域,计算机辅助诊断技术已提升了图像诊断的准确性,但针对声带疾病的喉镜图像深度学习模型仍相对稀缺,这在一定程度上限制了声带疾病识别领域的发展。文章采用经典的VGG-Net算法和一种引入注意力机制的算法来对喉镜图像进行分类。通过比较这两种算法在准确率、召回率/灵敏率和特异率方面的表现,评估它们在医学图像分类性能上的优劣。(剩余9092字)

目录
monitor
客服机器人