• 打印
  • 收藏
收藏成功
分享

基于隐私推断Non-IID联邦学习模型的后门攻击研究


打开文本图片集

摘  要:联邦学习安全与隐私在现实场景中受数据异构性的影响很大,为了研究隐私推断攻击、后门攻击与数据异构性的相互作用机理,提出一种基于隐私推断的高隐蔽后门攻击方案。首先基于生成对抗网络进行客户端的多样化数据重建,生成用于改善攻击者本地数据分布的补充数据集;在此基础上,实现一种源类别定向的后门攻击策略,不仅允许使用隐蔽触发器控制后门是否生效,还允许攻击者任意指定后门针对的源类别数据。(剩余8382字)

网站仅支持在线阅读(不支持PDF下载),如需保存文章,可以选择【打印】保存。

畅销排行榜
目录
monitor