• 打印
  • 收藏
收藏成功
分享

基于语义筛选的ALBERT-TextCNN中医文本多标签分类研究


打开文本图片集

摘  要:针对中医领域中的大量未标注文本,以及传统多标签分类模型提取的文本语义信息不够完整等问题,提出一种用于中医文本的多标签分类模型语义筛选ALBERT-TextCNN。首先进行特定领域任务自训练,将哮喘领域内属于多标签分类任务但未标注文本输入ALBERT进行预训练任务;其次ALBERT多层的Transform对已标注数据分别进行动态向量化表示,基于语义筛选选取最佳编码层生成的高效文本向量;最后引入TextCNN建立多标签分类器,提取文本向量不同层次的语义信息特征。(剩余12657字)

网站仅支持在线阅读(不支持PDF下载),如需保存文章,可以选择【打印】保存。

畅销排行榜
目录
monitor