考虑多点监测数据的混凝土坝智能预警分析方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:混凝土坝;多点变形监测;预警指标;K-means聚类法;ConvLSTM模型;3-Sigma原则中图分类号:TV62 文献标志码:Adoi:10.3969/j.issn.1000-1379.2025.07.024引用格式:,李炎隆,张野,等.考虑多点监测数据的混凝土坝智能预警分析方法[J].人民黄河,2025,47(7):150-155.

Intelligent Early Warning Analysis Method for Concrete Dams Considering Multi-Point Monitoring Data

ZHONG Wen¹,LI Yanlong1, ZHANG Ye¹, ZHOU Tao², KANG Xinyu¹,YANG Tao³, LI Kangping4 (1.StateKeyLboratoryofWaterEgeringEolodEnviontinAidreaXi'nUivesityfToloXi'na; 2.Huanghe HydropowerDevelopmentCo.,Ltd.,,Xining 810o,China;3.ChinaYangtzePowerCo.,Ltd.,Yibin 644612,China; 4.Power China Northwest Engineering Corporation Limited,Xi’an 71OO65,China)

Abstract:Inodertohancetheaccacyofarlywaringincocretedmsafetymonitoring,isstudypropedanintellgentearlyainganalysismetdbasedonulti-poitmitoringdataimingtoovercoetesuseptibilityoftraditioalsingle-poitmetodstoo structuralinteferec.FirstlyK-eanslusterngmethodasusedtoartiomoitoringontsihsiilaeforationpatesn ConvLSTMmodelwasemployed toextractthespatial-temporalfeaturesoftedformationsequenesfromeachclusterandmakepredictions. Byanalyzingtheresidualsequencesanddeterminingtheearlywarning treshldbasedonthe3-Sigmapriciple,single-pointearlywaing results weregenerated.Finall,teearlywaringresultsfromallusterswereitegratedtoensurethatanearlywaingwastriggdonly whenallmoitorgpoitswitinaustereibitaomalssiultaneoslyattesaetie.Experimentalresultsshowatteproposd methodreducesthefalsealamsandmiseddetectioscausedbyextealdisturbancesinsingle-pointearlywaingmetodsbyintegatig multi-point information,thereby improving the reliabilityand stabilityof the early warning system.

Keywords:concretedam;multi-ointdeforationmonitoring;arlywaingindicators;K-meansclustering method;onSTMmodel;3 Sigma principle

0 引言

大坝作为重要的水利设施,其安全性直接关系到人民生命财产和生态环境的安全[1-2]。(剩余7194字)

monitor