基于深度学习模型的混凝土坝变形预测研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:混凝土坝;变形监测;变形预测;LSTM;TCN中图分类号:TV642 文献标志码:A doi:10.3969/j.issn.1000-1379.2025.07.023引用格式:,,,等.基于深度学习模型的混凝土坝变形预测研究[J].人民黄河,2025,47(7):144-149,155.

Research on Deformation Prediction of Concrete Dams Based on Deep Learning Models

SU Xiaojun¹,XU Zengguang¹, ZHANG Ye¹,KANG Xinyu', ZHOU Tao²,YANG Tao³,LI Kangping4 (1.State KeyLaboratoryof WaterEngineering EcologyandEnvironment inAridArea,Xi’an Universityof Technology,Xi'an 710048,China;2.Huanghe Hydropower Development Co.,Ltd., Xining 81000,China; 3.China Yangtze Power Co.,Ltd.,Yibin 644612,China;4.Power China Northwest Engineering Co.,Ltd.,Xi'an 710065,China) Abstract: Inordertoimprovetheacuracyofpredictingconcretedamdeformationsandensuredamstructuralsafety,thispaperproposeda predictionmodelcombiningTemporalConvolutionalNetworks(TCN)andLongShort-TermMemory(LSTM)networks,imingthelimitationsofexistingpredictionmodelsincaptuingcomplexdeformationfeaturesandlong-tedependencies.TCNwasusedtoextractteporal featuresfromdeformationdta,hileLSTMcapturedlongtedependenciesiscombinationsignificantlyehancedteodel’sabilityo predictomplexdeformationpatesExperimentalesultsemonstratetat,compaedwithvariousinteligentpedictionodels,eo posedmodelaccuratelysiulatestdadfaprocsndcheshigerpredictiouacyFurteore,eodelosates asignificantadvantageincapturigomplexdefoationcharacteisticsofconcretedams,providingaovelteciquefordamsafetoi ring.

Key words:concrete dam;deformation monitoring;deformation prediction;LSTM;TCN

0 引言

水库大坝作为重要的基础设施,直接关系到库区人民的生命财产安全,一旦发生事故,后果将极为严重[1-3]。(剩余10114字)

monitor