基于集成学习和考虑滑坡负样本的滑坡易发性评价

打开文本图片集
关键词:滑坡易发性;集成学习;信息量法;滑坡负样本;黄河上游中图分类号:TP181;P642.22;TV882.1 文献标志码:A doi:10.3969/j.issn.1000-1379.2025.07.019引用格式:,,,等.基于集成学习和考虑滑坡负样本的滑坡易发性评价[J].人民黄河,2025,47(7):116-123
Landslide Susceptibility Evaluation Based on Integrated Learning and Considering Landslide Negative Samples
ENG Yuanxun1, ZHOU Kangkang1,HU Shaowei1, ZHANG Haichao²,YU Guoqing³, XU Lukai 3 ,PENG Hao² (1.College of Water Conservancy and Transportation, Zhengzhou University,Zhengzhou 45ooo1,China; 2.Power China Guiyang Engineering Corporation Limited, Guiyang 55O081, China; 3.Yellow River Institute of Hydraulic Research,YRCC,Zhengzhou 45OOO3,China)
Abstract:TevaluatioflndslidesuseptibitisofgeatgficanforgioaldisasterpreventionditigatioIviefei suesthatesinglecaifeintelandslidesuseptibilityvaluatiousingmacinlangalgodporpresn,dleo ofnegativesamplesoflanslidesaselatielybirarylndslidsuscetilityeaationoelaspropod,hchombdl tionmethodofnegativesamplesoflandslidesbasedonteinformationquantymetodwithmachineleaingintegrationalgorithms.Taking thesectionfromLijaxiatoGongboxiainteuppereachsoftheYllowRiverasthestudyaea3evaluationfactorssuchaselevation, slopegradientndpreipitaoneresecedasthevalatofctorsforlndslidurceresetionetdsfrgieples flandslides,namelyuferzon,lowslopeadientandifoatioquantityereadoptedBylingtheladslidesuscebilityevuationmodelsoftheasficationndessontree(AR)andeeitegatedlngrits(Bagng,oosting,ndadofor est),theperfomaeofteeuatiooelsunderdientintegatedeaingagritsanddintselectionetdsfotie plesoflandslideswasaalyzd.Thsultssowtatteintegatedleaigalgoritcasignificantlyimprovetepeformanceofthesingle baseclssifierandteiprovemenefetofteBoostingalgoiisteostpromientTeselectionmetodofegatiesamplebased onthe informationquantitytakesmostoftheevaluationfactorsintofullconsideration,andthereliabilityofthemodelishigher.
Keywords:landslidesusceptibility;integratedlearning;informationvaluemethod;landslidenegativesamples;upperreachesofthe Yellow River
0 引言
黄河上游李家峡至公伯峡区间地质结构复杂、昼夜温差大、生态环境脆弱、河流下切作用强烈,众多因素导致该区域地质灾害发生频繁[1],防治形势严峻。(剩余10835字)