基于深度自编码器的混凝土坝变形异常检测模型

打开文本图片集
关键词:混凝土坝;变形监测;异常检测;自编码器;深度学习中图分类号:TV642 文献标志码:A doi:10.3969/j.issn.1000-1379.2025.07.022用格式:,,,等.基于深度自编码器的混凝土坝变形异常检测模型[J].人民黄河,2025,47(7):137-143.
Concrete Dam Deformation Anomaly Detection Model Based on Deep Autoencoder
KANG Xinyu1,LI Yanlong',ZHANGYe1,ZHOU Tao²,ZHONGWen’,YANG Tao³ (1.StateKeyLaboratoryofWaterEgineingEcologndEvoeninAridAra,XianUivesityofTcholog,Xianina; 2.Huanghe Hydropower DevelopmentCo.,Ltd.,Xining 810o0,China;3.ChinaYangtzePowerCo.,Ltd.,Yibin 644612,China) Abstract:Anunsupervisedanomalydetectionmodelbasedonadputoencoderwasproposedtoaddressanomalousreadingsinconcrete damdeformationmonitoring,withtheobjectiveofenhancingdetectionacuracyandautomation.Theautoencoderwas trainedinanusuper visedmaneronnoraldefomationdatatolearlow-dimensionalfeaturerepresentationsandwassubsequentlyemploedtorebuildcoming measurements.Measurementsexhitingsignificantdeviationsetwenobservedandrebuildvalueswereclasifiedasanomales.Teresult showsthat theproposedmodelachievesover97%accuracyianomalydetectionandisdemonstratedtoperforeliablyundervarioutesting conditions.Conseqentlytheeutocoderbdroachisableofectielydentigfoatiaolsioeda, exhibiting robust and precise detection capabilities.
Key words: concrete dam; deformation monitoring;anomaly detection;autoencoder; deep learning
0 引言
混凝土项具有卓越的承载能力、优异的耐久性及良好的适应性,已成为水库大坝建设的首选类型[1-4]然而,在混凝土坝长期服役过程中,外部荷载变化(如水位波动、气温变化等)与内部物理化学侵蚀(如碳化、硫酸盐侵蚀等)持续对坝体造成负面影响,威胁大坝的安全运行[5]。(剩余10445字)