基于大数据的车用锂电池容量失效预测

  • 打印
  • 收藏
收藏成功


打开文本图片集

【摘  要】文章利用大数据技术,搭建LSTM锂电池容量失效预测模型。通过对大量试验数据进行分析,提取关键特征,对网络进行训练,并将训练后的模型与电池模型进行融合,利用该模型进行试验,通过对比分析验证该模型可以准确预测电池失效,从而为电动汽车电池管理提供有效的技术支持。

【关键词】锂电池;容量失效;LSTM;大数据

中图分类号:U469.72    文献标识码:A    文章编号:1003-8639( 2024 )08-0021-03

Failure Prediction of Lithium Battery Capacity Based on Big Data

WANG Wenli,WEI Limei

(Shengrui Transmission Co.,Ltd.,Weifang 261000,China)

【Abstract】This article uses big data technology to build an LSTM lithium battery capacity failure prediction model. By analyzing a large amount of experimental data,extracting key features,training the network,and integrating the trained model with the battery model,the model was used to conduct experiments. Through comparative analysis,it was verified that the model can accurately predict battery failure,thereby providing Provide effective technical support for electric vehicle battery management.

【Key words】lithium battery;capacity failure;LSTM;big data

作者简介

王文丽,女,工程师,工程硕士,主要从事汽车零部件失效分析及质量控制技术研究工作。(剩余3894字)

目录
monitor
客服机器人