基于改进LSTM神经网络的电动汽车充电负荷预测

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要: 当前对电动汽车(EV)充电负荷预测的研究缺少真实的数据支撑,并且模型考虑场景过于简单,影响因素考虑不到位,预测结果缺乏说服力。基于此,提出一种考虑多种电动汽车充电负荷影响因素的电动汽车充电负荷预测方法。首先,考虑天气、季节、温度、工作日、节假日等因素对电动汽车充电负荷的影响,采用三标度层次分析法分析各影响因素权重;其次,建立LSTM神经网络预测模型,通过真实数据训练得到用于预测的LSTM神经网络模型,结合影响因素权重分析结果对预测模型进行修正,得到最终的改进LSTM神经网络负荷预测模型;最后,采用常州某小区的真实数据对所提预测方法进行试验验证。(剩余8473字)

monitor