基于改进型Faster R CNN的仓储环境物体识别技术研究

  • 打印
  • 收藏
收藏成功

摘 要:为解决传统目标检测精确度不高、有效性差、难以适应仓储环境下多目标识别应用场景的问题,提出了一种改进型Faster RCNN目标检测算法。首先,采用ResNet50替换VGG16作为特征提取网络,以提高模型的检测精度;同时,为兼顾多尺度及小目标物体的检测,引入了特征金字塔网络,形成了残差金字塔特征提取网络ResFPN;其次,引入了注意力机制,提高输入特征的空间和通道有效信息利用率;最后,使用RoI Align代替原有的RoI Pooling,以消除因量化取整而产生的预测框回归误差。(剩余7507字)

monitor