多传感器的BPNN和SVM多源异构数据融合算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:多传感器的多源异构数据融合处理时,大量的冗余数据及复杂的非线性可分空间导致能耗较大,为此,提出了BP神经网络和支持向量机的多源异构数据融合算法。以数据关系构建约束条件,利用BP神经网络算法建立数据清洗模型,判定节点变量的活跃程度,优化数据输入;建立数据集合,提取数据特征向量;利用支持向量机泛化能力强、凸优化的特点,获取特征的最优分类超平面,获得非线性可分多源数据集转化为高维线性可分空间的最优决策值,输出结果。(剩余10519字)

monitor