基于FPgrowth算法的高维混合属性数据挖掘方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:常规高维混合属性数据挖掘方法多采用云平台技术,无法完整保留数据的结构相似性,使得数据挖掘效率较低。为此,提出了基于FPgrowth算法的高维混合属性数据挖掘方法。为了改善数据质量,根据高维混合属性数据在数据库中的存储结构,采用了一种固定算法实现数据去噪,并依据数据类型计算分类型和数值型相似度,结合FPgrowth算法对频繁项样本分支进行筛选生成项表头,保证数据结构相似性的完整性,通过搜索项表头输出有效关联规则,实现数据挖掘过程。(剩余8508字)

monitor