强化学习下浅充浅放充电策略AGV调度研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:针对自动化集装箱码头自动导引车(AGV)调度中的充电问题,考虑浅充浅放充电策略构建了混合整数优化模型。该模型以最小化AGV最终完工时间为目标,在考虑AGV电池电量变化以及AGV不同状态耗电差异的约束下,利用AGV空闲时间和一个作业循环结束时间补电,减少AGV充电次数,进而减少总完成时间。模型采用Wolf-PHC强化学习进行求解,并分别与GAMS求解器、Q-learning算法及遗传算法(genetic algorithm,GA)求解结果进行比较,以验证模型的有效性和算法的优越性。(剩余15711字)

目录
monitor
客服机器人