垂域大模型问答后台管理系统设计与实践

打开文本图片集
中图分类号:TP315;TP182 文献标识码:A 文章编号:1006-8228(2025)11-55-06
Abstract:Withhewdespreadaplicationoflargelanguagemodelsinverticalfields,itiscrucialtobuildabackendplatforthat supportsmult-tyequestio-answeringandsystemmanagementInresponsetoheshortcomingsoftecurrntRetrieval-Augmeted Generatin(RAG)systemindatamanagement,dynamicupdates,andreusability,thispaperproposesabackendmanagement architecturesolutionbasedonRAGandLangChaintoachieveful-processmanagementfromknowledgeconstruction,service configuration,tofedbackcolection.Basedonthissolution,abackendmanagementsystemwasdevelopedtosupportthe automatedconstructionanddynamicupdateoftheknowledgebase,theestablishmentofinteligentagents,userdatacolection,and corpusconversion.ThispracticeshowsthatthesystemcanimproveQAaccuracyandeficiencyefectivelysupportingdivified question-answering services.
Keywords:LargeLanguageModels;Retrieval-AugmentedGeneration(RAG);ManagementSystem;LangChain;DataManagement
0引言
近年来,基于大语言模型(LargeLanguageModel,LLM)的垂直领域智能问答系统,凭借其强大的语义理解能力与生成能力,推动了知识服务系统向智能化、个性化方向变革。(剩余7230字)