基于ShuffleNetV2与CSPPC的YOLOv8n铝型材缺陷检测轻量化模型

打开文本图片集
中图分类号:TP391.4 文献标识码:A
文章编号:1006-8228(2025)11-32-04
LightweightModel forDefect Detection ofYOLOv8n Aluminum Profiles Based on ShuffleNetV2 and CSPPC
Shen Jiamin
(Shanxi EngineeringVocational College,Taiyuan,Shanxi O3ooo9,China)
Abstract:Thisarticlefocusesontheproblemsoflargediferencesindefectscale,complexbackgroundinterference,andeasy misseddetectionofsmalldefectsinthesurfacedefectdetectiontaskofaluminumprofiles,andtomeetlowcomputationalcost requirements,thisarticlehasimprovedtheYOLOv8nmodelFirstlywereplacethebackbonenetworkwiththelightweight ShufleetV2networktoreducethenumberofmodelparameters;SecondlyweintroducetheCSPPCmoduleinthefeaturefusion section to reduce computational redundancy through partial convolution.Theexperimental resultsshow that the mAP@50 of the improved model reaches 81.3% ,an increase of 3 percentage points compared to the original model,a reduction of 21.6% in parameter count,and a reduction of 19.5% incomputational complexity. It reduces parameter count and computational complexity while improving detection accuracy.
Keywords:Defect Detection;YOLOv8n;Lightweight;ShuffleNetV2
0引言
铝型材广泛应用于制造业和建筑业,其表面质量直接影响产品性能。(剩余5472字)