基于ShuffleNetV2与CSPPC的YOLOv8n铝型材缺陷检测轻量化模型

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391.4 文献标识码:A

文章编号:1006-8228(2025)11-32-04

LightweightModel forDefect Detection ofYOLOv8n Aluminum Profiles Based on ShuffleNetV2 and CSPPC

Shen Jiamin

(Shanxi EngineeringVocational College,Taiyuan,Shanxi O3ooo9,China)

Abstract:Thisarticlefocusesontheproblemsoflargediferencesindefectscale,complexbackgroundinterference,andeasy misseddetectionofsmalldefectsinthesurfacedefectdetectiontaskofaluminumprofiles,andtomeetlowcomputationalcost requirements,thisarticlehasimprovedtheYOLOv8nmodelFirstlywereplacethebackbonenetworkwiththelightweight ShufleetV2networktoreducethenumberofmodelparameters;SecondlyweintroducetheCSPPCmoduleinthefeaturefusion section to reduce computational redundancy through partial convolution.Theexperimental resultsshow that the mAP@50 of the improved model reaches 81.3% ,an increase of 3 percentage points compared to the original model,a reduction of 21.6% in parameter count,and a reduction of 19.5% incomputational complexity. It reduces parameter count and computational complexity while improving detection accuracy.

Keywords:Defect Detection;YOLOv8n;Lightweight;ShuffleNetV2

0引言

铝型材广泛应用于制造业和建筑业,其表面质量直接影响产品性能。(剩余5472字)

monitor
客服机器人