精英引导的学习型遗传算法

打开文本图片集
中图分类号:TP301.6 文献标识码:A文章编号:1006-8228(2025)11-46-06
Abstract:Toaddresstheissesoftraditionalgeneticalgorithmsincomplexotimizationproblems,suchaseasilyfallngntolcal optima,slowconvergence,andinsuicientpopulationdiversitythispaperproposesanelite-individual-guidedleainggenetic algorithm(LGA)Intheelitelearningphase,eliteindividulsguideospringindividulsbyfacilitatingadaptivelearingandgene retentionbasedonlearmingfactors.Intheadaptivemutationphase,individualsadjusttheirmutationrateadaptivelybasedontheir curentfitnessvalues,whileteintroductionofasuboptimalindividualguidedbydistancetoitdirectsindividualstoperfofine localsearches,therebyavoiding localoptima.Both phasesemployagreedyselectionstrategytoensurethepopulationdoesnot degradeinlaterevolutionarystages.Tovalidatethealgorithm'sperformance,comparativeexperimentswereconductedamongLGA, GA,andMGA.TheresultsdemonstratethatLGAsignificantlyoutperformsthecomparativealgorithmsintermsofconvergence speed,globalsearchcapabilitandstablitymetrics,fectivelybalancingthecoflictbetweenxploitationandexploatiand mitigating the inherent shortcomings of traditional genetic algorithms.
Keywords:Learning Genetic Algorithm; Elite Guidance;Adaptive Mutation;Adaptive Learning
0引言
遗传算法(GeneticAlgorithm,GA)受达尔文生物进化论启发-2,该算法融合了自然选择和遗传学的原理,从而实现对复杂优化问题的求解。(剩余5719字)