基于LightGBM和SHAP的可解释性航班延误预测

打开文本图片集
中图分类号:V351 文献标识码:A 文章编号:1006-8228(2025)11-26-06
Interpretable Flight Delay Prediction based on LightGBM and SHAP
Cheng Xiaokang,Huang Ruoqian
(CivilAviation Flight University of China,Guanghan,Sichuan 6183o7,China)
Abstract:Toadressthechallengesofhyperparameteroptimizationandquantitativeanalysisoffeaturesynergyinflightdelay prediction,thispaperproposesaninterpretablepredictionmethdtatintegrateseficientparametersearchandinteractioeffect analysis.ByconstructingthemodelwithLightGBManddesigninganadaptiveoptimizationstrategy,thehyperparametersearch eficiencyisimprovedFurthemoretheSHAPInteractionItesityCoeficient(SHAP-I)isintroducedtoquantifytheglobal synergystrengthbetweenfeaturepairs,overcomingthelimiationoftraditionalmethodsthatonlyexplainthemainefectsof features.Experimentson2022datafromanairportdemonstratethatthemodelsignificantlyimprovespredictionacuracyand SHAP-ISefectivelyidentifeskeysynergythresholdsamong"traffcvolume,historicaldelays,andresources",providinga quantitative decision-making basis for dynamic airport control.
Keywords:Flight Delay;Lightweight Gradient Boosting;ExplainableAI;Feature Interaction
0引言
航班延误是影响民航运行效率和乘客体验的核心问题。(剩余7021字)